(!)NOTE : Windows 7 users won’t be able to use some latest features of eCatalog/WOS since Microsoft is ending support for Windows 7 on 14 Jan, 2020. Please upgrade your system for uninterrupted services.

  • Viewed
    Products
  • My
    Components
  • Cart
Recently Viewed Products
X
My Components
X
Cart item(s)
X
Loading...
  • Notice of End of Sales for Economy Series Pneumatic Equipment Category. More information.

MISUMI Proximity Sensors(Detection Head Size, Dimension L2 (Range):10~20)

MISUMI offers products Proximity Sensors specified by Detection Head Size, Dimension L2 (Range) 10~20 from Automation Components product category. There are a total of 1 items. Search and select detailed specifications of parts for your machine with free CAD downloads. MISUMI products are available to order through MISUMI online 24 hours a day. Free shipping, no minimum order.

Show More Detail Show More Detail

CAD
Days to Ship
  • All
  • Same day
  • 1 Day(s) or Less
  • 5 Day(s) or Less
  • 6 Day(s) or Less
  • 7 Day(s) or Less
  • Others

1 items

Sort By
30
45
60
  1. 1
  • You can add up to 6 items per a category to the compare list.

    Proximity Sensors with built-in Amplifier/Screw Type/Heat Resistant

    Proximity Sensors with built-in Amplifier/Screw Type/Heat Resistant

    MISUMI

    Proximity Sensors with built-in Amplifier/Screw Type/Heat Resistant
    Proximity sensors are one of the automation machine equipments. They offer a wide variety of sizes to choose from.
    [Feature]
    ● Shape :
    PSMMD3 - Cylinder
    PSMM4 - Screw
    ● Detection Head Size Dimension :
    PSMMD3 - 3 mm.
    PSMM4 - M4x0.5
    ● Detection Distance (mm.): 1
    ● Output Method : NPN (Normally Open)
    ● Sensor Detection Surface Material: Stainless Steel
    [Application]
    It is an important component in the automation system ,its primary function is to detect objects without requiring any physical contact.

    • Volume Discount
    CAD :
    2D / 3D
    Sensor Shape Detection Object Operating Environment Detection distance L1 [classification](mm) Detection Head Size, Dimension M Shield Detection Type Detection Head Size, Dimension D(Ø) Amplifier Detection Head Size, Dimension L2 (Range)(mm) Sensor Case Material Protection Structure (DIN40050-9) Sensor Detection Surface Material Protection Structure (IEC) Detection Head Size, Dimension W (Range)(mm) Detection Head Size, Dimension H (Range)(mm)
    Screw Magnetic Metal Space Saving - M4 Shield - - Built-in Type 10~20 Stainless Steel - Stainless Steel IP67 - -
    From: ₹ 13,580.00
    Days to Ship: 6 Day(s) or more
    day to ship 6 Day(s) or more
Brand
Product Series
CAD
From
Days to Ship
Sensor Shape
Detection Object
Operating Environment
Detection distance L1 [classification](mm)
Detection Head Size, Dimension M
Shield
Detection Type
Detection Head Size, Dimension D(Ø)
Amplifier
Detection Head Size, Dimension L2 (Range)(mm)
Sensor Case Material
Protection Structure (DIN40050-9)
Sensor Detection Surface Material
Protection Structure (IEC)
Detection Head Size, Dimension W (Range)(mm)
Detection Head Size, Dimension H (Range)(mm)

You can add up to 6 items per a category to the compare list.

Proximity Sensors with built-in Amplifier/Screw Type/Heat Resistant
    Brand

    MISUMI

    Product Series

    Proximity Sensors with built-in Amplifier/Screw Type/Heat Resistant

    CAD
    • 2D / 3D
    From

    ₹ 13,580.00

    Days to Ship 6 Day(s) or more
    Sensor ShapeScrew
    Detection ObjectMagnetic Metal
    Operating EnvironmentSpace Saving
    Detection distance L1 [classification](mm)-
    Detection Head Size, Dimension MM4
    ShieldShield
    Detection Type-
    Detection Head Size, Dimension D(Ø)-
    AmplifierBuilt-in Type
    Detection Head Size, Dimension L2 (Range)(mm)10~20
    Sensor Case MaterialStainless Steel
    Protection Structure (DIN40050-9)-
    Sensor Detection Surface MaterialStainless Steel
    Protection Structure (IEC)IP67
    Detection Head Size, Dimension W (Range)(mm)-
    Detection Head Size, Dimension H (Range)(mm)-

    Loading...

    1. 1

    Related Categories to Proximity Sensors

    FAQ Proximity Sensors

    Question: how to install proximity sensor
    Answer: Installing a proximity sensor, whether it is a capacitive or inductive type, involves the following general steps:
    1. Select the Mounting Location: Choose an appropriate location for the sensor installation. Consider factors such as the desired detection range, the type of object to be detected, and any environmental conditions that may affect the sensor's performance.
    2. Prepare the Mounting Surface: Ensure that the mounting surface is clean, flat, and suitable for attaching the sensor securely. Remove any dirt, debris, or contaminants that may interfere with the sensor's operation.
    3. Connect the Wiring: Connect the wiring of the proximity sensor to the appropriate power source and signal output. Follow the manufacturer's instructions for the specific sensor model to ensure correct wiring connections.
    4. Mount the Sensor: Securely mount the sensor onto the prepared mounting surface using appropriate mounting hardware. Ensure that the sensor is aligned properly and securely attached to prevent any movement or misalignment.
    5. Adjust the Sensitivity (if applicable): Some proximity sensors may have sensitivity adjustments to fine-tune the detection range. Refer to the manufacturer's instructions to set the desired sensitivity level based on the application requirements.
    6. Test the Sensor: Once the sensor is installed, test its functionality by introducing objects within its detection range. Ensure that the sensor reliably detects the presence or absence of objects as expected.
    It's important to note that the specific installation steps may vary depending on the sensor model and the application requirements. Always refer to the manufacturer's instructions and guidelines for the particular proximity sensor being installed.
    Question: How does a proximity sensor work?
    Answer: Proximity sensors work by detecting the presence or absence of objects within a certain range without physical contact.
    1. Capacitive proximity sensor, it works by measuring changes in capacitance. When an object enters the sensor's range, it disturbs the electric field around the sensor, causing a change in capacitance. The sensor detects this change and triggers a response, indicating the presence of the object.
    2. Inductive proximity sensor, on the other hand, uses electromagnetic fields. It generates an electromagnetic field and when a metallic object enters the field, it induces eddy currents in the object. This, in turn, creates changes in the sensor's electromagnetic field, which the sensor detects to determine the presence of the object.
    Question: What are the different types of proximity sensors?
    Answer: There are several types of proximity sensors used in engineering applications:
    1. Capacitive Proximity Sensors: These sensors detect objects by measuring changes in capacitance. They are effective for detecting non-metallic objects like liquids or plastics.
    2. Inductive Proximity Sensors: Inductive sensors use electromagnetic fields to detect metallic objects. They generate an electromagnetic field and detect changes in the field when a metallic object is present.
    3. Ultrasonic Proximity Sensors: Ultrasonic sensors emit high-frequency sound waves and measure the time it takes for the waves to bounce back after hitting an object. They are suitable for detecting objects at longer distances.
    4. Optical Proximity Sensors: Optical sensors use light to detect the presence or absence of an object. This category includes infrared, laser, and photoelectric sensors. They can be used in various applications depending on the specific sensor type.
    Question: What are the applications of proximity sensors?
    Answer: Proximity sensors, including capacitive proximity sensor and inductive proximity sensor, have numerous applications across various industries. Some common applications include object detection, presence sensing, position control, level detection, and automation processes. They are used in industries such as automotive manufacturing, food processing, packaging, robotics, conveyor systems, and many more. Proximity sensors are employed to detect the presence or absence of objects, control the movement of equipment, ensure safety in automated systems, and optimize efficiency in industrial processes.
    Question: How accurate are proximity sensors?
    Answer: Proximity sensors, including capacitive proximity sensor and inductive proximity sensor, can offer accurate detection within their defined range, typically spanning from a few millimeters to several meters. However, accuracy may be influenced by various factors such as the specific sensor type, environmental conditions, and the requirements of the application.
    X
    whatsapp-qr whatsapp-icon